
NASA Contractor Report 198155

ICASE Report No. 95-35

S
ON THE UTILITY OF THREADS FOR DATA PARALLEL

PROGRAMMING

Thomas Fahringer
Matthew Haines ( NASA-CR- _98155)

THREADS FOR OATA PARALLFL

""-tayusn Mehrotra PROGRAMM [NG F i ha|

15 p

ON THE UTILITY OF

Report (ICAS_)

N95-29455

Unclas

G3/61 0053206

Contract No. NAS 1-19480

May 1995

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association





On the Utility of Threads for Data Parallel Programming*

Thomas Fahringer t Matthew Haines* Piyush Mehrotra*

tInstitute for Software Technology and Parallel Systems

University of Vienna

Liechtensteinstrasse 22, A- 1092, Vienna, Austria

*ICASE

NASA Langley Research Center, Mail Stop 132C

Hampton, VA 23681-0001

Abstract

Threads provide a useful programming model for asynchronous behavior because of their abil-

ity to encapsulate units of work that can then be scheduled for execution at runtime, based

on the dynamic state of a system. Recently, the threaded model has been applied to the do-

main of data parallel scientific codes, and initial reports indicate that the threaded model can

produce performance gains over non-threaded approaches, primarily through the use of overlap-

ping useful computation with communication latency. However, overlapping computation with

communication is possible without the benefit of threads if the communication system supports

asynchronous primitives, and this comparison has not been made in previous papers. This paper

provides a critical look at the utility of lightweight threads as applied to data parallel scientific

programming.

*Research supported by the National Aeronautics and Space Administration under NASA Contract No. NASA-

19480, while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681.





1 Introduction

Threads provide a useful programming model for asynchronous behavior because of their ability

to encapsulate units of work that can then be scheduled for execution at runtime, based on the

dynamic state of a system. For example, the threaded model is used in the event-driven world of

network protocols, for client-server windowing applications, and for runtime systems implementing

fork semantics in task parallel programming languages [4, 11, 1]. The utility of threads in these

domains is in simplifying the complexities of asynchronous programming, and is well documented.

Recently, the threaded model has been applied to the domain of data parallel scientific codes [2,

6]. These initial reports indicate that the threaded model can produce performance gains over non-

threaded approaches, primarily through the use of overlapping computation with communication

latency. However, overlapping computation with communication is possible without the benefit of

threads if the communication system supports asynchronous primitives [8], and this comparison has

not been made in previous papers. Overlapping computations with communication is asynchronous

programming, so the potential for threads to simplify this approach may be valid. To what extent,

then, are threads useful in the realm of data parallel scientific programming?

This paper provides a critical look at the utility of lightweight threads as applied to data

parallel scientific programming. We employ a lightweight thread package for distributed memory

multiprocessors, called Chant [5], to encode 2 data parallel scientific applications: a simple Jacobi

program written in Fortran and a particle-in-ceU (PIC) simulation program written in C. We

compare the threaded performance of these applications with the non-threaded performance, and

discuss the implementation and "ease-of-programming" issues that arise. Our initial study indicates

that employing the threaded model in this domain raises several significant programming challenges,

and the performance gained by overlapping computations with communications is often either

negated by the increased overhead of the threaded system or can be matched using non-threaded,

asynchronous programming techniques. However, there are indications that, as with the other

asynchronous programming domains, threads simplify the task of overlapping communications with

computations and provide simultaneous access to other benefits, such as load balancing capabilities.

In Section 2 we provide background information on the threaded programming model and its

application to data parallel programming. Section 3 then provides the details of the threaded

implementations of our applications, including performance results and analysis, and we conclude

with remarks on the potential benefits of threads for data parallel programming in Section 4.

2 Lightweight Threads

A thread, as commonly defined, is an independent, sequential unit of computation that executes

within the context of a kernel-supported entity, such as a Unix process. Threads are often clas-

sified by their "weight", which corresponds to the amount of context that must be saved when

a thread is removed from the processor, and restored when a thread is reinstated on a processor

(i.e. a context switch). Operating processes and threads are typically referred to as heavyweight

or middleweight because of their large context and the need to cross the kernel interface for all

operations. By exposing all context and thread operations at the user-level, a minimal context for

a particular application can be defined, and operations to manipulate threads may avoid crossing

the kernel boundary. As a result, user-level (lightweight) threads can be switched in the order of



tensof microseconds,whichis at leastanorderofmagnitudebetter thancurrentoperatingsystem
processesandthreads.

Threadsaretypicallyusedfor representingasynchronouscomputationswithin a singleprocess,
sincethe schedulingis dynamicand can be influencedby the runtime conditionsof a system.
Thus,threadsaremost usefulwhentheschedulingof independenttasksis dependenton runtime
conditions,suchasevent-drivenapplications.For dataparallelprogramming,threadsaremost
commonlyusedin twoways:

1. Forlatencytolerance.Accessingdistantmemoriesin aparallelcomputer(whetherbymessage
passingor directaddressing)is typically a long-latencyoperationwith respectto accessing
localmemory.Often,thereis anorderof magnitudeseparatingtheaccesstimesfor localand
remotememories.Therefore,it ishighlydesirableto eitheravoidor hidethelatencyofremote
memoryreferences.The formeris oftenaccomplishedby usingintelligentpartitioning and
cachingtechniquesthat eliminatetheneedto accessaremotememorylocation.Thelatter is
accomplishedby overlappingusefulcomputationwith communication,thereby"hiding" the
latency.

A threadedsystemoverlapscomputationwith communicationby creatingmultiple threads
oneachprocessor(theactualnumberdependson therelativespeedsof theunderlyingthread
andcommunicationsystemsandon theremoteaccesspatternof the application)andallows
a threadto rununtil a remotememoryreferencehasbeeninitiated,at whichtimeit switches
to anotherreadythreadrather thanwait idle for the communicationrequestto complete.

2. For resourcemanagement.For data parallelprogramming,the parallelismis obtainedby
distributing theprogramdataovera setof processors(memories),whereeachprocessorcan
operateon its portionof the data independentof the others. It is oftenconvenientto write
dataparallelprogramsunderthe assumptionthat therearea large(or infinite) numberof
"virtual" processorsavailable,sothat thedecisionoverdistributionis controlledonlyby the
algorithmicconstraints.However,this requiresthat the virtual processorsbemappedonto
the physicalprocessorsat somepoint.

A threadedsystemcanbeusedto implementvirtual processors(VPs) [9],whereeachthread
implementsa singleVP. However,this is not a natural role for threadsto play, as this
requiresthat eachthreadmaintainits ownaddressspace,somethingtypicallynot supported
by underlyingthreadpackages.As a result, the programmeris forcedto manuallyseparate
globaldatastructuresinto separateregionsfor eachthread,which is difficult to do for even
smallprograms.

Forthis paperwefocuson the use of threads in data parallel programs, mainly for overlapping

computation with communication. It is also possible, however, to employ threads for other purposes,

such as task parallelism and load balancing, but these issues are beyond the scope of this paper.

2.1 Chant

In this section we outline the distributed threads pacakge, Chant, that is used for our experiments.

Though a detailed examination of distributed threads is beyond the scope of this paper, we will



Chant

Chant User Interface

Figure 1: Chant runtime layers and interfaces

nonetheless provide an introduction to Chant. Please refer to [5] for a more detailed description of

Chant and the issues faced in supporting distributed threads.

The POSIX committee has recently established a standard for the interface and functionality

of lightweight threads within an operating system process, called pthreads [7]. Since threads are

defined within the context of a process, they share a single address space, and communication

among threads is only defined in terms of shared memory primitives, such as events and locks.

Thus, the interaction of pthreads in a distributed environment is undefined. Likewise, the Message

Passing Interface Forum (MPI) has recently established a standard for communication between

processes [3]. Although various extensions to the standard have already been proposed [13, 14],

communication between lightweight threads within processes has yet to be supported by MPI.

Therefore, Chant was designed to provide a simple mechanism for combining lightweight threads

with interprocessor communication.

Chant is designed as a layered system (as shown in Figure 1), where efficient point-to-point

communication provides the basis for implementing remote service requests and, in turn, remote

thread operations. Chant reties on a system interface to achieve a high degree of portability, where

the underlying thread and communication systems are ports0 (a subset of pthreads; see [12]) and

MPI, respectively.

Next, Chant supports point-to-point communication (i.e., send/recv) between any two threads

in the system by utilizing the underlying message passing system (MPI). Issues to be addressed at

this level include naming global threads in the system, avoiding intermediate copies for message

buffers, and efficient polling for outstanding messages. Chant uses the concept of a context to

represent an addressing space within a processor, where contexts represent a linear ordering of

processes in the system as maintained by the underlying communication system (e.g., MPI uses

rank in MPI_COMM_WORLD).Global threads within Chant are therefore identified using the doublet

<cont ext_id, thread_id >.

Atop efficient point-to-point message passing, Chant supports remote service requests by in-

stantiating, in each context, a service thread which is responsible for handling all incoming remote

service requests (asynchronous messages) and delivering any necessary replies. Using the remote

service request mechanism, Chant can easily support remote thread operations, such as remote

thread create, by invoking the specified thread request on the desired processor and, possibly, by

adding some software "glue" to make it work.



Next, Chant supports collective operations among thread groups using a scoping mechanism

called ropes. Ropes allow a user to specify a collection of threads that win participate in a global,

collective operation such as a broadcast or barrier. Ropes also provide an alternate naming scheme

that allows all threads within the rope to be addressed using their relative index within the rope.

FinaLly, Chant provides a user interface that is an extension of the pthreads standard, where

access to each of the underlying layers can be made directly or indirectly. Thus it is still possible

to access the underlying MPI or pthreads interfaces from within a Chant thread.

3 Experiments

In this section we discuss two experiments used to evaluate the benefits of data parallel program-

ming using threads. The first experiment analyzes the Jacobi relaxation iterative method. The

second experiment deals with a particle-in-cell code, which is an irregular code. The threaded

versions are then compared against a conventional non-threaded programs employing communica-

tion/computation overlapping techniques based on asynchronous message passing primitives.

3.1 Jacobi

The Jacobi relaxation iterative method is used to approximate the solution of a partial differential

equation discretized on a grid. For this experiment we consider only the main Jacobi kernel routine

as shown below:

DO 10 Q=I,ITER

L: DO 20 J=2,N-1
DO 2O I=2,N-1

UHELP(I,J)=(1-OMEGA)*U(I,J)+OMEGA*0.25*
* (F(I,J)+U(I-1,J)+U(I+I,J)+U(I,J+I)+U(I,J-1))

20 CONTINUE

10 CONTINUE

Note that this code represents a regular Jacobi implementation, which means that each grid

element operation requires the same computational effort. Furthermore, for all experiments the

Jacobi kernel is placed within an outer loop over ITER iterations in order to obtain reasonably

large runtimes.

In order to evaluate the advantage of using threads for this kernel we manually encode three

different data parallel versions using a column-wise distribution of the arrays UHELP, U, and F

on a Intel Paragon machine with 128 nodes:

A blocking version which exchanges all data required to do local computations outside of

loops incorporating blocking receive operations.

A hand overlapped version which statically overlaps computation with communication as may

be done by a data parallel compiler (c.f. Kali compiler [8]). First, all send operations are

done. Second, all the local loop iterations which do not require non-local data are processed.

Third, the corresponding receive operations are executed in blocking mode. Finally, all loop

iterations requiring non-local data are processed.

4



8.0

6.0

co

m°4.0
u)

2.0

0.0

I

C)_locked

_ ,_-..'--.-.'-_handoverlapped

I I I I I
1 2 4 8 16

number of processors

Figure 2: Measured runtime for parallel regular Jacobi program versions with N=512, ITER=20,
B=I

A virtual threaded version that creates three different threads for each processor: two boundary

threads responsible for communicating with the other boundary threads and performing the

boundary iterations, and a computation thread responsible for performing all local iterations.

g-2 (where IPI divides N- 2) iterations of the J loop assigned. PEach processor gets
is the set of processors employed to execute the virtual threaded version. Each boundary

thread will perform B iterations, where 2 • B _< _-_. The computation thread will perform

g-2 _ 2 • B iterations. By changing B we can control the work distribution among boundaryIPI
and computation threads within a specific processor. For our analysis both boundary threads

execute the same number (B) of threads. An experiment (see Figure 6) will be shown which

shows the effect of varying B. Every local processor of P respectively creates and terminates

its boundary and computation threads at the beginning and at the end of the program,

and the threads are free to execute simultaneously, as there is no dependence among them.

Threads within the same processor access shared memory in order to prevent intra-processor

communication with messages.

Figure 2 shows the runtimes for all three program versions based on a regular Jacobi implemen-

tation. We observe that the hand-overlapped and threaded versions are slightly better than the

blocked version due to their ability to overlap computation and communication, but that the differ-

ence is nearly negligible. This is because the balanced computation and communication behavior

of a regular Jacobi version produces very even communication patterns in which all processors

exchange about the same amount of data at about the same time, and processors rarely wait long

for messages to be received. Also, since communication is rather small as compared with compu-

tation (problems of size N yield an O(N _) increase in computation as compared with an O(N)

increase of communication), effects of reducing communication costs are not dramatic. Finally, all

processors are responsible for the same amount of computation. Therefore, both computation and



1.5

1.0

0.5

0.0

blocked I

hand overlapped ]
threaded

o 1 2 3 4 5

process identifier

6 7

Figure 3: Workload of processors for parallel regular Jacobi program versions

8.0

6.0

to

4.0
to

2.0

0.0

blocked

hand overlapped

threaded

r-re<

il!! 

II
0 1 2 3 4 5

process identifier

: .-..=

6 7

Figure 4: Workload of processors for parallel irregular Jacobi program versions

communication phases occur in concert. This explains a nearly linear speedup for smaller number

of processors.

Figure 3 displays the even workload across all processors of the three program versions analyzed.

The threaded version is slightly worse than the hand overlapped version due to its context switch

overhead, and the blocking version has the largest runtime due to the small waiting time induced

by blocking receive operations.

Figure 5 shows the runtimes for all three Jacobi versions, however this time we employ an

irregular workload. In this version, we put a different load on a specific processor (in this case

processor 4). This conforms to some realistic situations in which different relaxation algorithms are

applied depending on the location of each grid point. The runtime of the irregular code significantly

increases due to the imbalanced load, and there is still no significant difference among the overaJ]

runtime of the three program versions. However, there is an important difference in the idle time



50.0 (_ = i I t

(/)

40.0

30.0

20.0

10.0

0.0

_laO_nkecdverlappe d

I I t I I
2 4 8 16

number of processors

Figure 5: Measured runtime for parallel irregular Jacobi program versions with N=512, ITER=20,

B=I

of the individual processors for the three methods.

Figure 4 depicts the runtime for each processor of an 8-processor Jacobi execution. It can

be clearly seen that processor 4 (due to the increased workload) dominates the runtime of the

entire program, and that all three program versions have a very similar runtime with respect to

processor 4 since each iteration is synchronized. However, the interesting aspect of this experiment

is that the threaded version implies a much smaller runtime for all other processors. The blocking

version requires each processor to wait for some data at the beginning of each kernel iteration. The

hand-overlapped version at one point of the execution also blocks for non-local data to be received.

In both of these versions all processors have to wait at a specific kernel iteration until processor

4 finishes the previous iteration and sends its corresponding data. In contrast, the computation

thread of the threaded version never has to wait for any of its boundary threads to complete.

Communication and blocking time of the boundary threads is always overlapped by useful work to

be done by the computation thread. Only the boundary threads between neighboring processors

depend on each other. However, the computation thread of processor 4, which is responsible for

the majority of work, does not considerably slow down its boundary threads. Since the Paragon

thread scheduling strategy assigns equal time slots to each thread in a round-robin fashion, once

the boundary threads of processor 4 are done, all other processors but 4 are finished too.

Finally, we want to investigate the effect of varying B, the number of iterations assigned to the

boundary threads. Note that the overall number of iterations assigned to the threads of a processor

(1 computation and 2 boundary threads) is fixed. By changing B, we control the work distribution

among the threads for each processor. Figure 6 displays the runtime of three different threaded

regular Jacobi versions with varying values for N, ITER, and B. This experiment clearly shows

that modifying B does not change the overall runtime for any threaded regular Jacobi version.

7



30.0 = ' D ' I

20.0 z _ "_"

(/)
0
(I)
(/)

10.0

o.o _ --__- --
0.0 10.0

N=512; 1=500
-Yl(--_ N=512; 1=20
_._...... _:::N=64; 1=500

., ...... )........ ;.........], ,
20.0 30.0 40.0

B

Figure 6: Threaded regular Jacobi version with 8 processors, 2 boundary and 1 computation thread

for various values of B

As we have noted above, the regular Jacobi version is highly balanced such that it seems to be

irrelevant how the loop iterations are distributed across the threads within one processor.

3.2 PIC

The Particle-in-CeU code (PIC) determines the motion of a group of interacting particles starting

with some initial configuration of positions and velocities in a specified volume of space. The

standard PIC version is an outer loop over time, with an inner loop alternating between two

computations:

1. update of positions and velocities from the dynamic equations (particle push phase)

2. compute the solution of electro-magnetic partial differential (field solution phase)

Lubeck and Faber [10] described a parallel implementation of PIC, where both the spatial grid

and the set of particles are regularly decomposed onto a set of processors. Each processor k keeps

track of three different groups of particles:

• Particles which are owned by k and reside in its own region of the spatial grid,

• Particles which are owned by k and reside in some other processor's region of the spatial grid,

and

• Particles which reside in its region of the spatial grid and are owned by some other processor.

By keeping track of the particles in this manner, it is possible to reduce the volume of commu-

nication needed to locate particles at each time step, but only at the extra expense of maintaining

these groupings.



20.0 l i w

15.0

(/}

o 10.0q)

5.0

0.0
0 8

(_riginal I
_---_functional threaded _ .-::'(

-_..... --_virtual threaded .. ;.':"'/"_

2 4 6

number of processors

Figure 7: Measured runtime for parallel PIC program with varying number of processors

For the purposes of our experiment, we evaluate three different PIC versions written in C on a

network of Sun-10 workstations:

. The original message passing version, derived from a code given to us by the University of

Colorado. This version has manually-overlapped computation and communication phases,

and the communication phases are highly sequential based on a single communication buffer

that each processor maintains. During the particle push phase, each processor sends and

receives a set of particles to other processors, and these variable-sized messages are read into

a single, common buffer on each processor. Since the messages are variable-sized, and a single

buffer is being used, the communication cannot be paraUelized.

. The functional threaded version, which splits each PIC phase into three threads, corresponding

to sending, computing, and receiving. The PIC phases are executed sequential but the threads

within a phase are executed simultaneously. The threads are created and terminated outside

of the outer (time) loop and synchronized via mutex variables inside of the loop in order to

prevent excessive thread creation and termination overhead.

, The virtual threaded version, which is identical to the original version except that a naive

partitioning scheme is employed to further sub-divide the spatial grid on each processor into

a number of virtual processors (threads).

Figure 7 plots the measured runtimes for three different PIC versions, as described above, with

1024 particles and for varying number of processors. Each processor corresponds to a Sun-10

workstation in a workstation cluster. It can be clearly seen that the original version implies a

slowdown in performance due to the fact that the number of send/receive operations (cf. Figure 8)

for the original implementation is increasing linearly with the number of processors incorporated.

9



._>
O

.¢
"0
¢-

"5

E
¢-

40000.0

30000.0

20000.0

10000.0

0.0
0 8

I I I I

original /
_----_ functional threaded /
•_"......."_- virtual threaded

/
/

/
/

/
/

_'_ 2 4 6

number of processors

Figure 8: Number of send/receive operations for parallel PIC program with varying number of

processors

Furthermore, the bookkeeping effort to maintain the particle groupings is significant for larger

number of processors. Three tables, one for each class of particles as described above, need to be

updated and organized. Additionally, the particles may cluster in only a few regions, implying a

load imbalance of particles, consequently increasing both communication and bookkeeping efforts.

Figure 7 also shows that the threaded PIC versions slightly decrease the performance as com-

pared to the original version. This is due to the fact that threads only improve execution speed if

they can overlap computation and communication beyond what is being done in the non-threaded

version. Since our original PIC code already overlapped computation with communication, the

threaded approach provided only overhead. The functional threaded version is slightly better than

the virtual threaded program because the former version is able to exploit both data and functional

parallelism, while the later version is restricted to data parallelism only.

In summary, we note that the original version manually overlapped computation with commu-

nication phases, thus exploiting the main performance benefit of threads. Using threads, however,

offers advantages with respect to ease of synchronization. In the original version computation and

communication phases have to be synchronized manually, while the threaded versions only required

the definition of a set of threads, and the thread-scheduler automatically schedules those threads

ready to execute based on dynamic conditions. The underlying system automatically takes care of

scheduling the threads such that blocking time is overlapped with computation. On the other hand,

it is not trivial to detect functional parallelism for the functional threaded version, in particular in

the presence of a highly complex C program with many side-effects. We encountered two principal

problems for the virtual threaded version: First, it is necessary to manually separate the data of

a single processor into thread private and thread global data, where thread global data is shared

among all threads which reside in the same processor. Second, communication among threads on

the same processor could be done via message passing or shared memory access (thread global

10



data). In the first case, the underlying system automatically takes care of the communication

at the cost of additional message passing layer overhead. This overhead depends on whether the

underlying thread system recognizes that a communication occurs between two threads within the

same processor or the message is passed to the message passing layer (e.g. MPI layer), which in the

worst case might even try to send the message to the network. In the second case, shared memory

synchronization is inevitable.

4 Conclusion

The potential for lightweight threads to simplify asynchronous programming is realized in many

applications, such as event-driven simulations and client-server applications. The extend to which

they are useful in the realm of data parallel scientific programming is, however, still debated.

In this paper we illustrate the use of lightweight threads for two applications: a Jacobi relaxation

code and a particle-in-cell (PIC) code. Based on our experiments, we can make several observa-

tions. First, adding lightweight threads to a data parallel application must be done with care so

as not to disrupt the communication volume. As was demonstrated with the PIC code, adding

threads can sometimes increase the overall communication volume, degrading the performance of

an application. Second, employing lightweight threads for overlapping computations and commu-

nication is sometimes not possible, and sometimes not necessary. Again referring the PIC code,

if the communication phase is written to be sequential, then employing multiple threads yields no

benefit since the threads will be serialized by the sequential communication operations. Also, if the

overlap is trivial (such as in Jacobi), then it is possible to encode the asynchronous communication

without threads. However, as we see in the Jacobi experiment, threads free resources that are

otherwise busy, providing the potential for load balancing to improve the execution or for running

threads from another job. Third, implementing "virtual processors" using threads is possible but

not well-supported, since threads assume a single addressing space within the same process, while

virtual processors require separate address spaces. If this type of addressing is not supported by the

underlying threads package (as is often the case), then the programmer must provide the support,

which is difficult and slow.

In summary, we observe that lightweight threads do have utility in the domain of data parallel

programming, but not to the extent as reported in previous papers when hand-overlapped commu-

nication is factored in. Also, the utility of threads is not necessarily in the increased performance

of an application, but in the simplification of asynchronous programming and the ability to release

idle resources for other work. While we do not attempt to provide the final word on the utility

of lightweight threads for data parallel programming, we do hope to add fuel to the fire for this

ongoing debate.

References

[1] Henri E. Bal, M. Frans Ka_shoek, and Andrew S. Tanenbaum. Orca: A language for parallel

programming of distributed systems. IEEE Transactions on Software Engineering, 18(3):190-

205, March 1992.

11



[2] EdwardW. Feltonand Dylan McNamee.Improvingthe performanceof message-passingap-
plicationsby multithreading. In Proceedings of the Scalable High Performance Computing

Conference, pages 84-89, April 1992.

[3] Message Passing Interface Forum. Document for a Standard Message Passing Interface, draft

edition, November 1993.

[4] I. T. Foster and K. M. Chandy. Fortran M: A language for modular parallel programming.

Technical Report MCS-P327-0992 Revision 1, Mathematics and Computer Science Division,

Argonne National Laboratory, June 1993.

[5] Matthew Haines, David Cronk, and Piyush Mehrotra. On the design of Chant: A talking

threads package. In Proceedings of Supercomputing 94, pages 350-359, Washington, D.C.,

November 1994. Also appears as ICASE Technical Report 94-25.

[6] J. Holm, A. Lain, and P. Banerjee. Compilation of scientific programs into multithreaded

and message driven computation. In Proceedings of the Scalable High Performance Computing

Conference, pages 518-525, Knoxville, TN, May 1994.

[7] IEEE. Threads Extension for Portable Operating Systems (Draft 7), February 1992.

[8] C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed exe-

cution. IEEE Transactions on Parallel and Distributed Systems, 2(4):440-451, October 1991.

[9] Ravi Konuru, Jeremy Casas, Robert Prouty, Steve Otto, and Jonathan Walpole. A user-level

process package for PVM. In Proceedings of Scalable High Performance Computing Conference,

1994.

[10] O.M. Lubeck and V. Faber. Modeling the performance of hypercubes: A case study using the

particle-in-cell application. Parallel Computing, 9(1):37-52, December 1988.

I11] Piyush Mehrotra and Matthew Haines. An overview of the Opus language and runtime sys-

tem. In Proceedings of the 7th Annual Workshop on Languages and Compilers for Parallel

Computers, New York, November 1994. Also Appears as ICASE Technical Report 94-39.

[12] Portable runtime systems

http://www.cs.uoregon.edu:80/paracomp/ports/.

(ports) consortium.

[13] Anthony Skjellum, Nathan E. Doss, and Kishore Viswanathan. Inter-communicator extensions

to MPI in the MPIX (MPI eXtension) library. Technical report, Computer Science Department

and NSF Engineering Research Center, Mississippi State University, July 1994. Submitted to

ICAE Journal Special Issue on Distributed Computing.

[14] Anthony Skjellum, Nathan E. Doss, Kishore Viswanathan, Aswini Chowdappa, and Pu-

rushotham V. Bangalore. Extending the message passing interface (MPI). Technical report,

Computer Science Department and NSF Engineering Research Center, Mississippi State Uni-

versity, 1994.

12



Form Approved
REPORT DOCUMENTATION PAGE OMeNo O704-OZe_

Publicreportingburdenfor thiscollectionof informationis estimatedto average1 hourper response,includingthe time for reviewinginstructions,searchingexistingdata sources,
gathering and mainla;nin_"the dataneeded,andcompletingandreviewingthe collectionof information.Send commentsregardingthis burdenestimateor anyother aspectof this
collectionof information,including suggestionsfor reducingthisburden,to WashingtonHeadquartersServices,Directorate for InformationOperationsandReports,1215 Jefferson
DavisHighway,Suite 1204. Arlington.VA 22202-4302.and to the Officeof Managementand Budget.PaperworkReductionProject(0704-0188). Washington.DC 20503

1. AGENCY USE ONLY(Leave blank) 12. REPORT DATE

May 1995

4. TITLE AND SUBTITLE

ON THE UTILITY OF THREADS FOR DATA
PARALLEL PROGRAMMING

6. AUTHOR(S)

Thomas Fahringer

Matthew Haines

Pi)'ush Mehrotra

17. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science
and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

3. REPORT TYPE AND DATES COVERED

Contractor Report
5. FUNDING NUMBERS

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 95-35

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-198155
ICASE Report No. 95-35

]1. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report
To appear in the International Conference on Supercomputing '95

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-U nhmited

12b. DISTRIBUTION CODE

Subject Category 60, 61

13. ABSTRACT (Maximum 200 words)

Threads provide a useful programming model for asynchronous behavior because of their ability to encapsulate
units of work that can then be scheduled for execution at runtime, based on the dynamic state of a system.
Recently, the threaded model has been applied to the domain of data parallel scientific codes, and initial reports
indicate that the threaded model can produce performance gains over non-threaded approaches, primarily through
the use of overlapping useful computation with communication latency. However, overlapping computation with
communication is possible without the benefit of threads if the communication system supports asynchronous
primitives, and this comparison has not been made in previous papers. This paper provides a critical look at
the utility of lightweight threads as apphed to data parallel scientific programming.

14. SUBJECT TERMS

Threads; distributed memory environments; data parallel programs

17. SECURITY CLASSIFICATION

OF REPORT
Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF THIS PAGE OF ABSTRACT
Unclassified

15. NUMBER OF PAGES

/4

16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribedby ANSI Std. Z39-18
298-102




